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Pseudo-domino palladium-catalyzed allylic
alkylation/Mizoroki–Heck coupling reaction:
a key sequence toward (±)-podophyllotoxin
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Abstract

A formal synthesis of podophyllotoxin was carried out in nine steps. The key pseudo-domino step was accomplished through the
succession of an intermolecular palladium-catalyzed allylic alkylation and an intramolecular Mizoroki–Heck coupling reaction.
� 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. (�)-Podophyllotoxin, etoposide, and teniposide structures.
Podophyllotoxin (Fig. 1), the parent member of the aryl-
tetralin lignan lactone family1 was first isolated in 1880
from podophyllin,2 a resinous powder obtained by precip-
itating an alcoholic tincture of the American Mayapple rhi-
zome (Podophyllum peltatum). Although the medicinal
properties of podophyllotoxin have been known for thou-
sands of years, particular attention toward this molecule
arose from the discovery of its antimitotic activity3 as a
result of its high affinity for tubulin.4 While altering cellular
division during mitosis, podophyllotoxin triggers cellular
death.5 However, the use of this molecule as anticancer
agent is hampered due to its high toxicity associated with
numerous secondary effects such as nausea, diarrhea, vom-
iting, and injury of healthy tissues.6 Consequently, several
hemi-synthetic derivatives of podophyllotoxin, such as eto-
poside7 and teniposide8 have been developed and success-
fully used for the clinical treatment of several cancers,
including small cell lung carcinoma, testicular cancer and
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Kaposi’s sarcoma.9 Interestingly, and in contrast to podo-
phyllotoxin, these analogs do not inhibit tubulin polymer-
ization, but act as topoisomerase II inhibitors, a nuclear
enzyme involved in transitional breaks of DNA double-
strand, compulsory for transcription.10

In 1998, we reported a stereoselective approach toward
3,4-disubstituted c-lactams based on the intramolecular
palladium-catalyzed allylic alkylation of stabilized acetam-
ide enolate anions taking place exclusively via a 5-exo

mode of cyclization.11 A few years later, we disclosed the
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Scheme 1. Synthesis of an aza-analog of podophyllotoxin.13
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synthesis of a novel aza-analog of podophyllotoxin exploit-
ing a pseudo-domino12 palladium-catalyzed intramolecular
allylic alkylation/Mizoroki–Heck sequence,13 the cycliza-
tion precursor being assembled through an acid-mediated
benzhydrylation protocol, previously discovered in our
group (Scheme 1).14

From this result, we next envisioned to exploit the
pseudo-domino palladium-catalyzed allylic alkylation/
Mizoroki–Heck sequence process for the synthesis of the
parent member, podophyllotoxin.15
ref.16
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Scheme 2. Retrosynthetic approach to podophyllotoxin.
As two efficient syntheses of aryltetralin lignan lactones
reported in the literature entail keto diester A as an
advanced intermediate,16 we focused on the latter structure
as our synthetic goal. We report herein a formal synthesis
of (±)-podophyllotoxin according to the retrosynthetic
path depicted in Scheme 2. Key precursor A would arise
via oxidative cleavage of tetracyclic diester B, which could
in turn derive from an intramolecular palladium-catalyzed
Mizoroki–Heck coupling reaction of the bromoaryl alkene
C. A palladium-catalyzed allylation may then allow the
preparation of C from D. Finally, alkylation of a malonate
diester with the suitably functionalized benzhydrol E con-
cludes the retrosynthesis.

Accordingly, Lewis acid promoted benzhydrylation of
dimethyl malonate with benzhydrol 1a17 was first attempted
(Scheme 3). Neither BF3�OEt2 nor TiCl4 proved to be suc-
cessful in generating the desired adduct 2. After some exper-
imentation, 2 could be cleanly obtained (86% yield)
by treatment of dimethyl malonate with the benzhydryl
acetate 1b in the presence of TiCl4 in toluene at room
temperature.18

Intermolecular palladium-catalyzed allylic alkylation of
diester 2 was next studied (Scheme 4). Treatment of 2 with
allyl acetate (2.5 equiv) in presence of the catalytic system
[Pd(OAc)2 (10 mol %), dppe (20 mol %)], NaH as the base
(1.2 equiv) in DMF gave, after 2 h at room temperature the
allylated diester 3 in 92% yield.19

Then, exposure of 3 to the identical catalytic system as
previously used in the allylation step [Pd(OAc)2

(10 mol %), dppe (20 mol %)], in the presence of n-Bu4NOAc
(2 equiv) in DMF afforded, after 2 h at 100 �C, the expected
cyclized product 4 in 93% yield.20 These two successful
experiments occurring under similar reaction conditions
prompted us to investigate the one-pot pseudo-domino
palladium-catalyzed allylic alkylation/Mizoroki–Heck
sequence. In the event, treatment of precursor 2 with
Pd(OAc)2 (10 mol %), dppe (20 mol %), NaH (1.2 equiv),
allyl acetate (2.5 equiv) and n-Bu4NOAc (2 equiv) in
DMF gave, after 2 h at 100 �C, the product of domino reac-
tion 4 in 65% yield.21,22 Oxidative cleavage of the vinylidene
moiety to give ketone 5a completed the formal synthesis of
podophyllotoxin (Scheme 5). This was obtained via
osmium-catalyzed cis-dihydroxylation of 4 followed by
periodate mediated cleavage of the crude diol (75% yield).23

Compound 5a was thus obtained in four steps and 42%
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overall yield (pseudo-domino version), or five steps and
56% overall yield (sequential version), starting from benz-
hydrol 1a, dimethyl malonate, and allyl acetate. This new
route may be regarded as a valid alternative to the previ-
ously reported synthesis of 5b.16

In summary, the above described sequence represents a
successful nine-step formal synthesis of podophyllotoxin.
The key pseudo-domino step was accomplished through
the succession of an intermolecular palladium-catalyzed
allylic alkylation and an intramolecular Mizoroki–Heck
coupling. Extension of the present strategy to the prepara-
tion of other aryltetralin lignan lactones is currently
underway.
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A.; Gómez-Zurita, M. A. Toxicon 2004, 44, 441–459.

5. (a) Cortese, F.; Bhattacharyya, B.; Wolff, J. J. Biol. Chem. 1977, 252,
1134–1140; (b) Andreu, J. M.; Timasheff, S. N. Biochemistry 1982, 21,
6465–6476; (c) Sackett, D. L. Pharm. Ther. 1993, 59, 163–228.

6. Kelly, M. G.; Hartwell, J. L. J. Nat. Cancer Inst. 1954, 14, 967–1010.
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22. Experimental procedure for the allylic alkylation/Mizoroki–Heck

coupling pseudo-domino process: To a solution of Pd(OAc)2

(10 mol %) in dry DMF (500 lL) under nitrogen atmosphere was
added dppe (20 mol %). After 5 min stirring allyl acetate (27 lL,
0.244 mmol, 2.5 equiv), then tetra-n-butyl ammonium acetate (60 mg,
0.20 mmol, 2 equiv) were added. In a separate flask, to a solution of
diester 2 (50 mg, 0.1 mmol) in dry DMF (1.5 mL) at 0 �C under
nitrogen atmosphere was added NaH (60% in oil, 0.117 mmol,
1.2 equiv). The resulting mixture was stirred at 0 �C for 15 min and,
after warming to room temperature, added to the reaction vessel
containing the catalytic system. After stirring at 100 �C for 2 h, a
saturated aqueous NH4Cl solution was added and the aqueous phase
was extracted three times with Et2O. The collected organic phases
were washed three times with brine, dried over MgSO4, and the
solvent was removed in vacuo. The crude product was purified by
flash chromatography (cyclohexane/ethyl acetate 8/2) to afford cyclic
diester 4 in 65% yield.

23. Experimental procedure for the oxidative cleavage: To a solution of
4 (87 mg, 0.185 mmol, 1 equiv) in THF/H2O (4.5 mL/0.5 mL),
4-methylmorpholine-N-oxide (51 mg, 0.37 mmol, 2 equiv) and
OsCl3

�� H2O (2.75 mg, 5 mol %) were added in this order. The
resulting dark suspension was allowed to stir at room temperature
overnight. An excess of 50 wt.% aqueous NaHSO3 solution (20 mL)
was added and the solution was stirred for further 15 min. The
separated aqueous layer was extracted with AcOEt (3 � 10 mL) and
solvents were removed under reduced pressure. The resulting crude
product was then dissolved in acetone/H2O (12 mL/8 mL) and NaIO4

(119 mg, 0.56 mmol, 3 equiv) was added in one portion. After stirring
for 3 h at room temperature, acetone was removed under reduced
pressure, brine was added (10 mL) and the resulting aqueous layer
extracted with AcOEt (3 � 10 mL). The organic layer was then dried
over MgSO4, and the solvent removed under reduced pressure. The
crude material was purified by flash chromatography (cyclohexane/
ethyl acetate 6/4) to afford keto diester 5 in 75% yield. 1H NMR
(CDCl3, 400 MHz): 3.18–3.30 (2d, J = 18.2 Hz, AB system, 2H), 3.65
(s, 6H), 3.72 (s, 6H), 3.79 (s, 3H), 5.05 (s, 1H), 6.02 (s, 2H), 6.19 (s,
2H), 6.63 (s, 1H), 7.47 (s, 1H). 13C NMR (CDCl3, 100 MHz): 38.3,
49.8, 52.9, 53.4, 56.1, 60.0, 60.8, 102.0, 105.5, 106.6, 108.8, 126.3,
132.7, 137.7, 140.3, 147.9, 153.2, 153.4, 168.3, 169.9, 192.8.
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